
1	



2	



3	



4	



5	



6	



Don’t	worry,	they’re	context	sensi7ve:	
	

7	



8	



9	



10	



11	



12	



13	



14	



15	



16	



17	



18	



Note:	final	implies	override	(but	it’s	not	an	error	to	add	both)	
	

19	



There’s	no	way	to	achieve	the	same	behavior	in	C++03	
	

20	



21	



22	



23	



24	



Clang	would	have	matched	a	long	overload,	if	present,	but	any	other	overload	
requires	an	implicit	conversion	
	

25	



26	



27	



28	



29	



30	



31	



32	



33	



34	



35	



36	



37	



38	



39	



Can	be	used	in	templates,	and	to	do	compile-7me	checks	
The	condi7on	must	always	be	a	constant	expression	
	

40	



This	code	fails	to	compile	because	in	non-constexpr	context,	n	is	not	a	constant	
expression.	
	

41	



42	



43	



44	



45	



46	



47	



48	



49	



WARNING:	decltype	behavior	is	different	from	auto	with	respect	to	references	and	
cv-qualifiers	
decltype	also	deduces	references	and	cv-qualifiers	
	

50	



51	



52	



53	



54	



Const	&&	anc	const	&	are	s7ll	dins7nct	types	

55	



Gives	the	possibility	to	overload	a	method	with	reference	qualifier,	to	differen7ate	
between	the	contexts	where	the	method	is	used	
If	we	remove	2,	we	explicitly	forbid	calling	get()	on	a	temporary	object,	and	line	at	4	
will	generate	an	error.	
	

56	



In	C++11,	variables	going	out	of	scope	(in	the	return	line)	and	temporaries	returned	
by	value	are	treated	as	rvalue	references	
This	enable	a	new	form	of	constructor	to	be	ac7vated	when	returning	(complex)	
objects:	
	
The	move	constructor	usually	“steals”	the	resources	from	the	dying	object	and	
“move”	them	to	the	des7na7on,	rather	than	copying	them		
	

57	



As	in	the	copy-constructor	<->	copy-assignment	duality,	move-constructor	have	its	
dual,	the	move-assignment	

58	



Constructor	tracking	class	in	C++03		
	

59	



60	



61	



We	didn’t	have	to	change	the	test	code	in	order	to	take	advantage	of	the	move	
seman7cs!	
	

62	



In	the	return	line	v	is	automa7cally	converted	into	a	rvalue	reference,	thus	allowing	
move	constructor	and	assignment	operators	to	be	used	in	this	context	
	
Crea7ng	a	good	example	for	this	is	complex,	because	in	simple	cases	the	return	value	
op7miza7on	kicks	in,	and	the	copy/move	constructor	is	op7mized	away.	
	
RVO/NRVO	will	be	mandatory	in	C++17	
	
	
	

63	



T	is	lec	in	an	unspecified	state,	but	it	will	correctly	destroy	when	the	destructor	is	
called	at	the	end	of	scope	

64	



65	



66	



67	



68	



69	



70	



Specifier	
Replaces	throw(),	with	a	more	efficient	seman7cs	
Reduces	the	EH	overhead	to	zero	
If	an	excep7on	is	raised,	the	execu7on	halts	
Can	be	condi7onally	enabled	
	
Used	as	an	operator,	Returns	true	if	the	expression	is	noexcept	
	
	

71	



If	the	func7on	throws,	unexpected()	is	called.	
The	above	code	is	noexcept	for	ints,	but	could	be	throwing	when	other	types	are	
used	(e.g	a	Matrix	class,	where	mul7plica7on	throws	on	matrix	dimension	mismatch)	
	
	

72	



73	



74	



Are	preferable	for	small	computa7ons	to	be	used	as	customiza7on	points	for	func7on	
e.g.	func7ons	from	the	<algorithm>	header	
	

75	



Can	capture	variables	from	the	current	scope,	y	is	the	captured	variable	(by	value,	in	
this	case)	
	

76	



77	



Improvements	in	C++14	
Generic	computa7ons	in	the	capture	list	are	supported,	too,	but	strongly	
discouraged.	
	

78	



79	



80	



81	



82	



83	



84	



85	



86	



87	



88	



89	


